

テクニカルデータシート

Sustamid[®] 6 FR natural

製品の特徴

- ハロゲンおよびリンを不含有
- 耐火性および自己消火性
- 高硬度・高剛性
- 良好な摺動性・摩擦性
- 良好な機械加工性
- 優れた寸法安定性
- EN 45545-2に準拠

製品の用途例

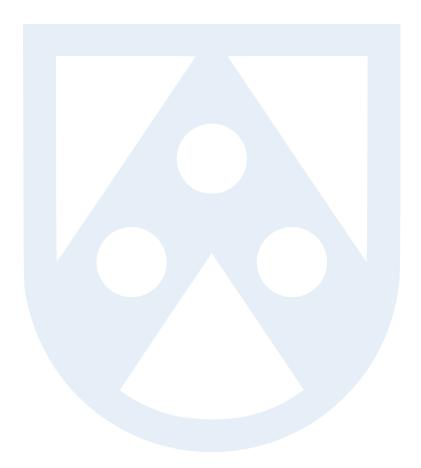
- 鉄道車両
- 車両建造
- 半導体
- 半導体関連の工場設備

		試験法	単位	値
一般的物性				
密度		DIN EN ISO 1183-1	g / cm ³	1,17
吸水率		DIN EN ISO 62	%	3,0
燃焼性 (厚み 3 mm / 6 mm)		UL 94		V0 / V0
機械的物性				
引張降伏応力	,	DIN EN ISO 527	MPa	82
引張破壊呼び歪		DIN EN ISO 527	%	3
引張弾性率		DIN EN ISO 527	MPa	3800
ショア硬度		DIN EN ISO 868	scale D	83
熱的物性				
融点		ISO 11357-3	°C	222
熱容量		DIN 52612	kJ / (kg * K)	1,70
線膨張係数		DIN 53752	10 ⁻⁶ / K	90
使用温度(長期)		平均值	°C	-20 85
使用温度(短期、最大)		平均值	°C	160
荷重たわみ温度		DIN EN ISO 75, Verf. A, HDT	°C	65
電気的物性				
————————————————————— 体積固有抵抗		DIN EN 62631-3-1	Ω * cm	10 ¹³
表面固有抵抗		DIN EN 62631-3-2		10 ¹⁶

Roechling Industrial Gastonia, LP

903 Gastonia Technology Parkway • 28034 Dallas/United States (US) • Tel. +1 704 922-7814 info.gastonia@roechling.com • www.roechling.com/industrial/rep-us

Print: 27/07/2024 • Release: 07/05/2024 • Version: 1.0


PIM-Version: 12 • PIM-ID: 753710 • PIM-Code: 12-25-10.16.10.10.69.150.10-11.7.9.13-11

The following applies to Polyamides: Under the influence of moisture absorption, the mechanical properties change. The material becomes tougher and more resistant to impact, the modulus of elasticity declines. Depending on the environmental atmosphere, the temperature and the period of moisture absorption, only the surface layer is affected by alterations of property to a certain depth. On thick-walled parts, the center area remains unaffected. The short-term maximum application temperature only applies to very low mechanical stress for a few hours. The long-term maximum application temperature is based on the thermal ageing of plastics by oxidation, resulting in a decrease of the mechanical properties. This applies to an exposure to temperatures for at least 5.000 hours causing a 50% loss of the tensile strength from the original value (measured at room temperature). This value says nothing about the mechanical strength of the material at high application temperatures. In case of thick-walled parts, only the surface layer is affected by oxidation from high temperatures. With the addition of antioxidants, a better protection of the surface layer is achieved. In any case, the center area of the material remains unaffected. The minimum application temperature is basically influenced by possible stress factors like impact and/or shock under application. The values stated refer to an minimum degree of impact stress. The data stated above are average values ascertained by statistical tests on a regular basis. They are in accordance with DIN EN 15860. They serve as information about our products and are presented as a guide to choose from our range of materials. This, however, does not include an assurance of specific properties or the suitability for particular application purposes that are legally binding. Since the properties also depend on the dimension of the semi-finished products and the degree of crystallization (e.g. nucleating by pigments), the actual values of the properties of a particular product may dif

Roechling Industrial Gastonia, LP

903 Gastonia Technology Parkway • 28034 Dallas/United States (US) • Tel. +1 704 922-7814 info.gastonia@roechling.com • www.roechling.com/industrial/rep-us

Print: 27/07/2024 • Release: 07/05/2024 • Version: 1.0

PIM-Version: 12 • PIM-ID: 753710 • PIM-Code: 12-25-10.16.10.10.69.150.10-11.7.9.13-11

